Beckhoff employs Microsoft operating systems for its PC-based control technology. When used in industrial automation, the operating system must be extended at the lowest level for deterministic real-time behavior. The real-time kernels for MS-DOS and Windows developed by Beckhoff form the basis for this. As a Microsoft technology partner, Beckhoff obtains early access to new Windows technologies and is thus able to guarantee the operability of the new operating systems and their Embedded variants, as well as multi-core support for real-time applications.
The great advantage of PC-based control lies in the possibility to process general IT tasks and functions in parallel, since they must be executed in real-time. Real-time-capable execution means that the temporal start and end of a computing operation or a sequence of computing operations are repeatedly deterministic. In order to enable the coexistence of these different worlds, the standard PC for PC control is extended by real-time.

Generally available operating systems with significant market distribution are only conditionally real-time-capable, since this is not demanded in the higher software layers or application levels of a PC. However, the processing of hardware signals and interrupts also has to take place quickly and deterministically even in office and home PCs, so that events generated in quick succession by the hardware are not lost. For that reason, particular attention is paid to deterministic processing and short response times even at the lowest level in general PC operating systems. This is where a real-time extension for a general operating system comes in.

The central starting point for the temporal allocation of PC computing capacity and the control of the real-time functions of PC control is the timer interrupt. The source of this time-controlled interrupt depends on the development history of the PC architecture, wherein the timer that triggered the real-time interrupt under MS-DOS is also still available on current PC hardware. The use of other interrupt sources is more efficient nowadays, however.

As the name implies, the timer interrupt interrupts the CPU’s current instruction processing after a configurable length of time and branches via the interrupt vector table to the specific code for the interrupt concerned. This ensures that real-time code is cyclically processed. The precisely maintained length of time between two interrupts is the basis for the quality of the real-time functionality of the PC control system. With each interrupt it is optionally possible to accomplish a context change between two different processing tasks via a scheduler.

PC Control – Real-time under MS-DOS

MS-DOS or PC-DOS (simply referred to as DOS from now on) is a “low level” operating system from today’s point of view. With the help of the PC-BIOS, DOS (Disk Operating System) mainly manages the PC’s hardware resources, such as mass storage devices and interfaces to connected devices. As a “single task” operating system, DOS can only start one program at a time. If another program is to be executed, the one currently being processed must be terminated first. In order to make background functions possible despite that, TSR (Terminate Stay Resident) provides a “back door” to leave small auxiliary programs in memory after terminating the program. These TSR programs can be brought to “quasi life” using interrupts. Examples of this are PC remote control programs, which allow access to a DOS-based computer by modem.

Beckhoff developed its first DOS-based software PLC solution in 1988 under the designation S1000. The further development for software-based PLC/NC/CNC with a user interface in one program followed in 1993 with the S2000 software.

The S2000 software distinguished between three task levels: the NC task with the highest priority, followed by the PLC task and the foreground task and the user interface, which was executed in the remaining available computing time of the PC. The changeover between the task levels was accomplished via a scheduler, which was called by the timer interrupt in adjustable integral multiples of one millisecond. The NC function had priority over the freely programmable PLC function. The PLC consisted of one task, which could be programmed by the user in an S5-IL dialect. The sensors and actuators of the controlled machine were read in or output via Beckhoff’s Lightbus network.

The S2000 foreground task consisted of cooperative multitasking, which made user inputs in parallel to background functions possible, thus removing
the single-task limitation of the DOS operating system. The visual display of
the user interface was implemented by textual graphics with 80 x 25 charac-
ters and an ASCII character set. DOS was used for the administration of the PC
operating equipment and essentially for data storage in mass storage devices.

PC Control on the basis of Microsoft Windows

With the further development of general PC technology with higher process-
ing power and full graphic displays, extensive operating system extensions
became necessary in order to use the resulting new solutions. A graphical
user interface for DOS was initially developed on the PC in the form of
Windows, which enjoyed increasing popularity from version 3.1 onwards.
Windows 95 used 32-bit processors and introduced pre-emptive multitasking
as well as a modern user surface.

In Windows NT, Microsoft developed a fundamentally new operating system
for server and workstations, initially for the professional field. Due to
the higher stability of Windows NT in comparison with Windows 95 (which
still relied internally on MS-DOS) NT enjoyed greater acceptance than Win-
dows 95 in the industrial environment. Windows NT then also formed the
basis for TwinCAT, the first Windows-based PC control solution from Beckhoff.
In TwinCAT (The Windows Control and Automation Technology), a completely
new automation system was developed on basis of the PC Control concept
that replaces conventional PLC and NC/CNC controllers as well as operating
devices. The hardware components familiar from conventional automation
technology (PLC, NC, axis cards, etc.) are implemented in TwinCAT as so-
called software devices. TwinCAT can be modularly extended depending on
needs without having to change existing software structures.

The TwinCAT software devices can be distributed to different components,
depending on requirements: The TwinCAT PLC programs can run both on
Beckhoff PCs and on Bus Terminal Controllers. A so-called message router
manages and distributes all messages in the system via TCP/IP connections
(PC systems) or via serial interfaces and fieldbuses (Bus Terminal Control-
lers).

Real-time functionality under Windows

The integration of a real-time extension into a complex operating system such
as Windows NT (Windows 2000, Windows XP, Windows Vista and Windows
7 are very closely related in this regard) is considerably more difficult than
was the case with MS-DOS. Windows is inherently capable of multitasking, so
that many processes can be executed in parallel. Therefore, hardware access
can take place only in the protected kernel mode. Drivers and the operating
system expect a defined temporal behavior of the PC hardware. In order to
enable the most transparent possible integration of real-time functionality in
Windows without at the same time changing the operating system or other
standard software components, a timer implementation was developed for
TwinCAT and patented by Beckhoff: the “double-tick.”

“Double-tick” is the name given to the system characteristic of triggering an
interrupt each time when switching from non-real-time mode to real-time
mode and back again. When switching to real-time mode, the interrupt is
used at the same time to activate the TwinCAT scheduler. The active, deter-
ministic switching back to non-real-time mode after an adjustable length of
time guarantees not only that Windows is given sufficient computing time
by the respective CPU, but also that the necessary response times for certain
hardware functions, such as modem, network or USB, are adhered to.

The TwinCAT real-time mode is interrupted in normal mode only by the
double-tick interrupt, which activates the scheduler of the real-time kernel
and switches back to Windows if necessary. Exceptions to this, however,
are the NMI (Non Maskable Interrupt), which is triggered by intolerable
hardware errors, and the SMI (System Management Interrupt). In exceptional
cases, however, these events can also be prevented by the configuration of
TwinCAT. All regular interrupts necessary for the operation of the PC system
are allowed in non-real-time mode and are also processed there. Under the
conditions described, TwinCAT can ensure the necessary real-time functional-
ity without disturbing the operation of the PC system.

In contrast to the S2000 software, TwinCAT has a modular structure and
offers greater automation functionality. In order to support this modularity
and finer granularity in the timing and prioritization, a real-time core was
developed for TwinCAT that allows 64 task priorities to be assigned, which
are then executed in the real-time mode. Beyond that the real-time core offers
functions for the synchronization of tasks and CPUs and for intertask com-
unication. The pre-emptive scheduler ensures that the task with the highest
priority is started at the desired time and runs to its end. The tasks with a
lower priority share the remaining computing time according to their rank.
Windows CE – PC Control scales itself for Embedded systems

Increasingly, powerful PC systems with ever more powerful operating systems and convenient user interfaces are frequently oversized for simple automation applications. In Windows CE, Microsoft has developed an operating system which is compatible to desktop Windows and can be finely scaled in terms of size and function. Originally planned for use mainly in mobile devices, Windows CE has been real-time-capable since version 3.0 and is used increasingly in the industrial environment.

Due to the relationship of Windows CE with the "large" versions of Windows, it was possible to adapt "TwinCAT CE" to "TwinCAT XP" with compatible source code. This means that all current and future TwinCAT functions are also available under Windows CE. The only restrictions are those due to the available hardware platforms.

TwinCAT CE uses the native real-time capability of Windows CE, extended by a fine-granular timer (resolution < 1 ms) on Beckhoff Embedded PCs. Since TwinCAT has mapped all real-time functions on Windows CE, TwinCAT real-time applications such as software PLC and Motion Control can coexist with real-time applications of a different origin.

Since version 3.0 of Windows CE, released in 2000, the operating system has been continuously developed, but always remains at least one step behind the desktop Windows. The current version of Windows CE is Windows Embedded Compact 7. It now supports SMP (symmetric multi-processing) for the first time on multiprocessor systems. TwinCAT CE 3 will also use and support this function of the operating system.

Multi-core – PC Control processing power multiplies itself

In addition to dual core CPUs, quad or octuple core units are now also available at a reasonable cost. This development benefits software-based automation solutions because they are able to distribute tasks depending on the number of available CPU cores. In other words: functional units such as HMI, PLC control, PLC runtime and NC can be distributed to dedicated cores with less effort than has been the case until now.

Beckhoff facilitates the utilization of multi-core systems through corresponding configuration and diagnostics tools. For example, the "TwinCAT System Manager" enables monitoring of real-time task runtimes and manual configuration of priorities or task sequences. Tasks can be allocated statically to a particular core via configurable core affinities. Ready-made profiles can be used to mimic conventional classification into PLC and NC runtime systems. In the development of real-time or PLC applications in the TwinCAT system environment, the switch from single to dual-core systems is taking place seamlessly since TwinCAT uses only one core here. However, the transition from the single or dual-core to the multi-core system will also be a fluid one, because TwinCAT can release several cores so that the available computing power can be used. The real-time runtime environment continues to use only one CPU so that existing PLC projects can be used directly without losing any of their benefits. A special characteristic of the software generation, TwinCAT 3, is that each used core sets the optimum system clock depending on the cycle time of its task. This saves computing power and reduces the energy demand.

Fig. 3: The CX9000 Embedded PC series integrates PC-based control technology in a compact bus terminal housing with Windows CE operating system.

Fig. 4: Dual-core CPU. Due to the use of multi-core systems, functional units (e.g. PLC and NC runtimes, HMI) are distributed to individual computer cores.

As TwinCAT makes unused CPU time available for Windows applications, the Windows operating system sees two CPUs, of which one is running at part capacity. Windows applications built from several program threads can benefit from this. The Windows operating system distributes the application threads to the available CPUs, which physically run in parallel, so that the CPU hardware is optimally used. However, synchronization gaps are more likely to occur in the application of physical parallel processing than in the virtual parallel processing of threads. Here the CPU changes very quickly back and forth between various programs so that, although it looks like parallel processing, it actually takes place sequentially. In order to optimally use multi-core systems in the future, all applications must be divided in a modular way into threads or tasks as far as possible. Windows and TwinCAT can thus distribute the processing of program components optimally to the available
of the overall system, depending on the application. On the one hand, more
advantages or disadvantages for the performance
features under the name IA-32e mode. Both technologies are compatible
with one another and offer 32-bit and 64-bit compatibility as sub-modes. In
reference to the x86 history of the respective processors, Microsoft refers to
this mode as x64 in current development tools.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the falling costs of dynamic RAM and the increasing memory require-
ments of resource-hungry applications such as HD video processing, new
PCs are increasingly being offered with memory capacities of more than
4 GB. Since this is the theoretical limit of the address space for a 32-bit CPU
(in reality approx. 3.5 GB is actually available), advanced PCs are increasingly
based on 64-bit operating systems. 64-bit Windows utilizes a mode of modern
x86 CPUs that enables 32-bit applications to be used unmodified in parallel
with 64-bit applications. This operating mode developed by AMD therefore
enables a smooth transition from 32-bit to 64-bit environments. AMD calls
this processor mode 64-bit longmode, while Intel offers CPUs with these
features under the name IA-32e mode. Both technologies are compatible
with one another and offer 32-bit and 64-bit compatibility as sub-modes. In
reference to the x86 history of the respective processors, Microsoft refers to
this mode as x64 in current development tools.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the falling costs of dynamic RAM and the increasing memory require-
ments of resource-hungry applications such as HD video processing, new
PCs are increasingly being offered with memory capacities of more than
4 GB. Since this is the theoretical limit of the address space for a 32-bit CPU
(in reality approx. 3.5 GB is actually available), advanced PCs are increasingly
based on 64-bit operating systems. 64-bit Windows utilizes a mode of modern
x86 CPUs that enables 32-bit applications to be used unmodified in parallel
with 64-bit applications. This operating mode developed by AMD therefore
enables a smooth transition from 32-bit to 64-bit environments. AMD calls
this processor mode 64-bit longmode, while Intel offers CPUs with these
features under the name IA-32e mode. Both technologies are compatible
with one another and offer 32-bit and 64-bit compatibility as sub-modes. In
reference to the x86 history of the respective processors, Microsoft refers to
this mode as x64 in current development tools.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.
Due to the processor characteristics mentioned, Windows can execute 32 or
64-bit applications in the 64-bit version, wherein 32-bit applications must
accept slight speed losses, since all accesses to the 64-bit operating system
must be converted from 32 to 64 bits. Like the operating system for x64,
device drivers that run in kernel mode must be compiled and also signed.
Signing is intended to enable unique determination of the origin of a device
driver, thereby preventing harmful code from being loaded into the address
space of the operating system.