
Why IPC-based safety?
The use of IPCs for safety functions is mainly based on the high 

quality of modern IPCs and the firmware tailored to them. The suc-

cessful development of fail-safe I/O terminals and the high standard 

of fail-safe communication, such as Safety over EtherCAT, contribute 

to their successful usage. 

But how should calculations on a PC-based control system with 

provable safety be made? The tasks of fail-safe automation systems 

are to detect errors with proven high probability and to deploy a 
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Realizing Safety Applications with the Industrial PC
An increasing number of modern automation systems are using high-performance Industrial PCs to execute control tasks. Until 
now, their performance capabilities could not be used for the execution of safety functions. The IPC’s complexity prevented safety 
proofs in accordance to the internationally accepted safety standards if conventional control solutions were simply transferred to 
the IPC. By using mathematical codes, it is now possible to execute safety functions with the IPC according to SIL 3.

Enormous skepticism surrounded the introduction of the first PC-

based control systems in the late 1980s. This was understandable 

as every user had negative experiences with regular office PCs, and 

did not want to introduce their (un-)reliability to manufacturing 

operations. Although the IPCs already exhibited a high standard of 

quality even at that time and have since become better and more 

powerful, a trace of this skepticism can still be felt today. Therefore, 

it may still astonish certain users that IPCs can now be used in safety 

applications.
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Basic principle of the fail-safe Industrial PC
In addition to redundancy – multiple executions of identical or similar 

tasks – data redundancy plays an increasingly larger role. This kind of 

redundancy can also be considered as mathematical coding: Transformed 

data are generated from the original data in a new, much larger range 

of values by means of coding rules. If data assumes values that are 

inconsistent with the coding rules, even if they lie within the correct 

range of values, they do not belong to the code. The data are therefore 

invalid and can only be a result of errors in the storage or processing of 

the data. 

The arithmetic codes used here are based on prime numbers and were 

first described in detail in [1]. In the publication, the original data are 

multiplied by a prime number in an upstream unit, e.g. in special safe 

sensors, and a specific offset is added. If no multiple of this prime number 

remains after subtracting the offset, an error is detected. Hence, [1] even 

describes a single-channel solution (single-channel hardware and single-

channel software).

The value of a coded variable xc can thus be represented as a product of 

the original value xf and a prime number A (see [1, 5]):

xc = A · xf

Then, a variable-specific offset Bx can be added to the coded value, so that 

xc = A · xf  + Bx

applies. Bx is also called the static signature. Now, there are no longer 

only multiples of the prime number A located in the memory; the value 

Bx , depending on the memory location, must be subtracted before a 

multiple of A results. 

An additional offset Dt  containing the respective processor cycle, called 

the dynamic signature, completes the coding:

 xc = A · xf  + Bx + Dt .

With the help of the dynamic signature, the incorrect use of outdated 

values is now detectable. The error detection is explained below using an 

addition as an example. 

In addition to the coded variable xc , the variable yc , with

 yc = A · yf  + By + Dt

is used. The result zc of the coded addition follows the corresponding 

composition

 zc = A · zf  + Bz + Dt .

The coded addition must be executed as follows:

 zc = xc  + yc  + (Bz – Bx – By) – Dt .

The value (Bz – Bx – By) is a constant that contains information about 

the variables involved and the kind of operation. For example, if the off-

sets Bx , By and Bz are specified as 1093, 5012, and 8913 respectively, 

then 2808 is to be found at the appropriate place in the coded program. 

The dynamic signature must be subtracted here since each coded vari-

able xc and yc contains exactly one Dt and the correct coded sum zc also 

contains exactly one Dt .

safe reaction via peripheral devices. In most cases, redundant hard-

ware and software channels are used to detect errors. Results are re-

garded as correct and further used only if the channels supply consistent 

data.

Moreover, in order to comply with international safety standards, it 

must be proven that there is no single error that affects several chan-

nels in the same way, so that a comparison is successful and the error 

cannot be detected that way (so-called common cause). It is precisely 

this characteristic that must be validated very critically when using dif-

ferent cores of multi-core processors, since many resources are shared 

by some or even all of the cores. It is much more efficient to use math-

ematical methods that also support the use of multi-core processors in 

which the distribution of the sub-tasks to the individual cores and the 

type of usage of common resources are not safety features that need 

to be verified.

The combination of several software channels with different coding, 

which is easily possible on an IPC, increases the quality of the error 

detection and thereby considerably lowers the residual error probability 

(see fig. 1). Although the size of the necessary memory multiplies (longer 

data types, larger number of operations per channel, redundant channels) 

and the processing time potentially increases due to the fact that the 

software channels are actually processed successively – these potential 

disadvantages are insignificant if high-performance IPCs are used.

 

Fig. 1: Architecture of the fail-safe IPC
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In addition, the virtually simultaneous execution of safety-relevant and 

non-safety-relevant control programs on one IPC is possible, so that its 

available performance can be optimally utilized. 

Conclusion
The present capability of Industrial PCs permits the efficient use of arith-

metic codes to execute safety-relevant control programs. The necessary 

increased memory and the large number of extensive coded operations 

do not present a problem for a modern IPC. The quality of Industrial PCs 

is of such a high level that continuous operation is ensured and the detec-

tion of an error does not continuously initiate the transition to the safe 

state (usually a non-productive state).

In the solution presented in this article, extended coding is used in order 

to obtain a high level of error detection in the data processing unit of an 

Industrial PC. The certifiability of the approach according to IEC 61508 

has been confirmed in a report by TÜV SÜD. The necessary safe coupling 

to the process peripherals is enabled via Safety over EtherCAT.
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A simple, single-channel check of correctness for zc tests only the validity 

of the value:

 (zc  – Bz – Dt) mod A == 0?
Falsifications of the values xc and yc , the reading of incorrect memory 

locations, the use of outdated values and errors of the arithmetic unit 

can thereby be detected. The probability that an error is not detected 

(i.e. the residual error probability) is calculated by 1/A (see e.g. [3]). 

The distance between all valid values is A. All values lying in between are 

identified as being erroneous (see fig. 2). A must therefore be selected 

as large as possible.

Fig. 2: Range of values of coded variables

A substantial improvement of the detection of errors can be achieved by 

checking with the help of coded data from various software channels [4]. 

For example, in the case of two coded channels the check is:

 A2  · (zc1  – Bz1 – Dt1) == A1 · (zc2  – Bz2 – Dt2)?
The residual error probability reduces considerably if several channels 

are employed.

Advantages of the use of mathematical coding
The fast innovation cycles for microprocessors mean that every hardware-

based safety proof becomes outdated within a short time span [5], there-

fore continuously requiring new proofs. Due to the strict mathematical 

basis applied here, the proof does not need to refer to the respective 

processor and its environment. The characteristics of the mathematical 

code determine the residual error probability and finally the SIL accord-

ing to IEC 61508.
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