
Why IPC-based safety?
The use of IPCs for safety functions is mainly based on the high

quality of modern IPCs and the firmware tailored to them. The suc-

cessful development of fail-safe I/O terminals and the high standard

of fail-safe communication, such as Safety over EtherCAT, contribute

to their successful usage.

But how should calculations on a PC-based control system with

provable safety be made? The tasks of fail-safe automation systems

are to detect errors with proven high probability and to deploy a

 technology25 Years of PC Control | 08/2011

Realizing Safety Applications with the Industrial PC
An increasing number of modern automation systems are using high-performance Industrial PCs to execute control tasks. Until
now, their performance capabilities could not be used for the execution of safety functions. The IPC’s complexity prevented safety
proofs in accordance to the internationally accepted safety standards if conventional control solutions were simply transferred to
the IPC. By using mathematical codes, it is now possible to execute safety functions with the IPC according to SIL 3.

Enormous skepticism surrounded the introduction of the first PC-

based control systems in the late 1980s. This was understandable

as every user had negative experiences with regular office PCs, and

did not want to introduce their (un-)reliability to manufacturing

operations. Although the IPCs already exhibited a high standard of

quality even at that time and have since become better and more

powerful, a trace of this skepticism can still be felt today. Therefore,

it may still astonish certain users that IPCs can now be used in safety

applications.

YEARSYEARS
PC CONTROL

25

 technology 25 Years of PC Control | 08/2011

Basic principle of the fail-safe Industrial PC
In addition to redundancy – multiple executions of identical or similar

tasks – data redundancy plays an increasingly larger role. This kind of

redundancy can also be considered as mathematical coding: Transformed

data are generated from the original data in a new, much larger range

of values by means of coding rules. If data assumes values that are

inconsistent with the coding rules, even if they lie within the correct

range of values, they do not belong to the code. The data are therefore

invalid and can only be a result of errors in the storage or processing of

the data.

The arithmetic codes used here are based on prime numbers and were

first described in detail in [1]. In the publication, the original data are

multiplied by a prime number in an upstream unit, e.g. in special safe

sensors, and a specific offset is added. If no multiple of this prime number

remains after subtracting the offset, an error is detected. Hence, [1] even

describes a single-channel solution (single-channel hardware and single-

channel software).

The value of a coded variable xc can thus be represented as a product of

the original value xf and a prime number A (see [1, 5]):

xc = A · xf

Then, a variable-specific offset Bx can be added to the coded value, so that

xc = A · xf + Bx

applies. Bx is also called the static signature. Now, there are no longer

only multiples of the prime number A located in the memory; the value

Bx , depending on the memory location, must be subtracted before a

multiple of A results.

An additional offset Dt containing the respective processor cycle, called

the dynamic signature, completes the coding:

 xc = A · xf + Bx + Dt .

With the help of the dynamic signature, the incorrect use of outdated

values is now detectable. The error detection is explained below using an

addition as an example.

In addition to the coded variable xc , the variable yc , with

 yc = A · yf + By + Dt

is used. The result zc of the coded addition follows the corresponding

composition

 zc = A · zf + Bz + Dt .

The coded addition must be executed as follows:

 zc = xc + yc + (Bz – Bx – By) – Dt .

The value (Bz – Bx – By) is a constant that contains information about

the variables involved and the kind of operation. For example, if the off-

sets Bx , By and Bz are specified as 1093, 5012, and 8913 respectively,

then 2808 is to be found at the appropriate place in the coded program.

The dynamic signature must be subtracted here since each coded vari-

able xc and yc contains exactly one Dt and the correct coded sum zc also

contains exactly one Dt .

safe reaction via peripheral devices. In most cases, redundant hard-

ware and software channels are used to detect errors. Results are re-

garded as correct and further used only if the channels supply consistent

data.

Moreover, in order to comply with international safety standards, it

must be proven that there is no single error that affects several chan-

nels in the same way, so that a comparison is successful and the error

cannot be detected that way (so-called common cause). It is precisely

this characteristic that must be validated very critically when using dif-

ferent cores of multi-core processors, since many resources are shared

by some or even all of the cores. It is much more efficient to use math-

ematical methods that also support the use of multi-core processors in

which the distribution of the sub-tasks to the individual cores and the

type of usage of common resources are not safety features that need

to be verified.

The combination of several software channels with different coding,

which is easily possible on an IPC, increases the quality of the error

detection and thereby considerably lowers the residual error probability

(see fig. 1). Although the size of the necessary memory multiplies (longer

data types, larger number of operations per channel, redundant channels)

and the processing time potentially increases due to the fact that the

software channels are actually processed successively – these potential

disadvantages are insignificant if high-performance IPCs are used.

Fig. 1: Architecture of the fail-safe IPC

 technology25 Years of PC Control | 08/2011

In addition, the virtually simultaneous execution of safety-relevant and

non-safety-relevant control programs on one IPC is possible, so that its

available performance can be optimally utilized.

Conclusion
The present capability of Industrial PCs permits the efficient use of arith-

metic codes to execute safety-relevant control programs. The necessary

increased memory and the large number of extensive coded operations

do not present a problem for a modern IPC. The quality of Industrial PCs

is of such a high level that continuous operation is ensured and the detec-

tion of an error does not continuously initiate the transition to the safe

state (usually a non-productive state).

In the solution presented in this article, extended coding is used in order

to obtain a high level of error detection in the data processing unit of an

Industrial PC. The certifiability of the approach according to IEC 61508

has been confirmed in a report by TÜV SÜD. The necessary safe coupling

to the process peripherals is enabled via Safety over EtherCAT.

Literature

[1] Forin, P.: Vital Coded Microprocessor Principles and Application for Various Transit

Systems. IFAC Control, Computers, Communications, Paris, 1989, S. 79-84.

[2] Wappler, U., Fetzer, C.: Software Encoded Processing: Building Dependable Systems

with Commodity Hardware. International Conference on Computer Safety, Reliability

and Security, SAFECOMP 2007, LNCS 4680, Munich, Springer, 2007, S. 356-369.

[3] Ozello, P.: The Coded Microprocessor Certification. International Conference on

Computer Safety, Reliability and Security, SAFECOMP 1992, Munich, Springer, 1992,

S. 185-190.

[4] Oh, N., Mitra, S., McCluskey, E.J.: ED4I: Error Detection by Diverse Data and Dupli-

cated Instructions. IEEE Transactions on Computers, 51, 2002, S. 180-199.

[5] Mottok, J., Schiller, F., Völkl, T., Zeitler, T.: A Concept for a Safe Realization of a State

Machine in Embedded Automotive Applications. International Conference on Computer

Safety, Reliability and Security, SAFECOMP 2007, LNCS 4680, Munich, Springer, 2007,

S. 283-288.

A simple, single-channel check of correctness for zc tests only the validity

of the value:

 (zc – Bz – Dt) mod A == 0?
Falsifications of the values xc and yc , the reading of incorrect memory

locations, the use of outdated values and errors of the arithmetic unit

can thereby be detected. The probability that an error is not detected

(i.e. the residual error probability) is calculated by 1/A (see e.g. [3]).

The distance between all valid values is A. All values lying in between are

identified as being erroneous (see fig. 2). A must therefore be selected

as large as possible.

Fig. 2: Range of values of coded variables

A substantial improvement of the detection of errors can be achieved by

checking with the help of coded data from various software channels [4].

For example, in the case of two coded channels the check is:

 A2 · (zc1 – Bz1 – Dt1) == A1 · (zc2 – Bz2 – Dt2)?
The residual error probability reduces considerably if several channels

are employed.

Advantages of the use of mathematical coding
The fast innovation cycles for microprocessors mean that every hardware-

based safety proof becomes outdated within a short time span [5], there-

fore continuously requiring new proofs. Due to the strict mathematical

basis applied here, the proof does not need to refer to the respective

processor and its environment. The characteristics of the mathematical

code determine the residual error probability and finally the SIL accord-

ing to IEC 61508.

Prof. Dr.-Ing. Frank Schiller,

Scientific Project Manager of Safety

and Security, Beckhoff Automation

YEARSYEARS
PC CONTROL

25

